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ABSTRACT: Three conjugated polymers (P1−P3) with
benzodithiophene derivatives as the donor unit, 5-fluoro-6-(2-
hexyldecyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5] thiadia-
zole as the acceptor unit and thiophene as the spacer were
designed, synthesized, and used as donor materials for polymer
solar cells (PSCs). The influence of side chains at the
benzodithiophene unit on the performance of PSCs was
investigated. PSCs with the blend of P2:PC71BM (1:2, by
weight) as the active layer show the highest power conversion
efficiency (PCE) of 6.88%, with an open circuit voltage (Voc) of
0.76 V, a short circuit current (Jsc) of 14.67 mA/cm2, and a fill
factor (FF) of 0.62. Our research revealed that the variation of side chains had a great influence on the morphology of blend
films, which is crucial to the performance of PSCs. As indicated by transmission electron microscopy, the blends of P1:PC71BM
(1:2) and P2:PC71BM (1:2) formed nanofibers, whereas the blends of P3:PC71BM (1:2) formed spherical domains. Therefore,
we concluded that formation of a more interpenetrating phase-separated donor−acceptor network with a larger interfacial area
and proper percolation in the blends from P1 to P2 is mainly responsible for better performance in the corresponding devices.
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■ INTRODUCTION

Because of the characteristics such as being lightweight, flexible,
and low-cost roll-to-roll processable, polymer solar cells (PSCs)
have attracted intense research interest and their material
catalogs and the performances have experienced a rapid
development in the past few years.1−4 The power conversion
efficiency has been improved to 11%5 through material
design,6−12 device structure innovation,13−17 and interfacial
engineering.18−21 Thanks to a large interfacial area between the
donor−acceptor (D−A) interface and the phase-separated
interpenetrating network, the bulk heterojunction structure has
been proven to be the most efficient structure to harvest
photogenerated charge carriers in polymer solar cells.22 Besides
the rapid progress in the design and synthesis of nonfullerene
or fullerene derivatives as electron acceptor materials,23−29 the
development of novel donor materials have also made a great
deal of contribution to the efficiency improvement of PSCs.
Especially, the donor−acceptor (D−A) alternating design
strategy in the main chain, which takes advantage of the

intramolecular charge transfer (CT) and can easily tune the
band gap and energy level of conjugated polymers, has been
proven to be a very useful approach to design new polymer
donor materials. On the basis of this concept, a large number of
new donor and acceptor building blocks have been successfully
developed for the construction of new conjugated polymer
donor materials for PSCs.30−40

Among a variety of building blocks for high-efficiency
conjugated polymer donor materials, benzodithiophene and
benzothiadiazole derivatives are promising donor and acceptor
units, respectively. As a result, a large number of conjugated
polymers with benzodithiophene as the donor unit and
benzothiadiazole as the acceptor unit have been synthesized
and used as the donor material for PSCs and high power
conversion efficiency (PCE) up to 8% has been achieved.41−51
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As a member of the benzothiadiazole family, 5-fluoro-6-
alkyloxybenzothiadiazole has been demonstrated to be a useful
acceptor unit in constructing high-efficiency D−A conjugated
polymers.52 In this article, from the view of design of new
polymers to achieve high-performance PSCs, three polymers
with 5-fluoro-6-(2-hexyldecyloxy)-4,7-di(thiophen-2-yl)benzo-
[c][1,2,5]thiadiazole as the acceptor unit and benzodithiophene
derivatives as the donor unit have been designed, synthesized,
and used as donor materials for PSCs. It was found that the
introduction of a fluorine atom on the benzothiadiazole unit
can effectively lower the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) energy level of the resulted conjugated polymers,
while the introduction of a flexible alkoxy chain can increase the
solubility of polymers. In comparison with alkoxy substitution,
the introduction of thiophene side groups in the 4,8-positions
of benzodithiophene unit can lower the HOMO level as well as
increase the hole mobility of polymers. Deeper HOMO level is
favored to afford higher Voc, whereas higher hole mobility is
usually furnished with higher Jsc and FF.53−56 In this article,
PSCs with the blend of P2:PC71BM (1:2, by weight) as the
active layer exhibit a PCE of 6.88%, with a Voc of 0.76 V, a Jsc of
14.67 mA/cm2, and an FF of 0.62. Influences of lateral
substituents at the benzodithiophene unit on the morphology
of blend films and the device performance were also
investigated.

■ RESULTS AND DISCUSSION
Material Synthesis and Characterization. The syntheses

of monomer M4 and copolymers P1−P3 are outlined in
Scheme 1. 4,7-Dibromo-5,6-difluorobenzothiadiazole (1) was
synthesized in two steps from commercially available 4,5-
difluorobenzene-1,2-diamine according to literature proce-
dures.53 The treatment of compound 1 with 2-hexdecan-1-ol
and potassium tert-butoxide in tetrahydrofuran (THF) at 60 °C
afforded 5-fluoro-6-(2-hexyldecanoxy)benzothiadiazole (2) in a
yield of 59%. Suzuki cross-coupling of 2 with 4,4,5,5-
tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane and fol-
lowed by bromination of the cross-coupling product with N-
bromosuccinimide (NBS) in a solvent of chloroform at room
temperature afforded M4 in a total yield of 68%. Stille
couplings of M4 with M1, M2, and M3 were carried out with
Pd(PPh3)4 as the catalyst precursor in a solvent mixture of
toluene and N,N-dimethylformamide (DMF) at 100 °C to
afford polymers P1, P2, and P3 in yields of 80%, 79%, and 71%,
respectively. The solubility of P1 and P2 is poorer than P3. P3
can be readily dissolved in chlorobenzene (CB), 1,2-
dichlorobenzene (DCB), and 1,2,4-trichlorobenzene (TCB)
at room temperature, whereas P1 and P2 are almost insoluble
in the above-mentioned solvents at room temperature.
Nevertheless, P1 and P2 are soluble in CB, DCB, and TCB
at elevated temperature. Molecular weights and molecular
weight distributions were determined by gel permeation
chromatography (GPC) using TCB as an eluent at 150 °C
with narrowly distributed polystyrenes as calibration standards
and the results are summarized in Table 1. P1 showed a
number-average molecular weight (Mn) of 95.2 kg/mol, a
weight-average molecular weight (Mw) of 195.8 kg/mol, and a
polydispersity index (PDI) of 2.06. P2 showed a Mn of 57.8 kg/
mol, a Mw of 123.8 kg/mol, and a PDI of 2.14. P3 showed a Mn
of 86.4 kg/mol, a Mw of 182.4 kg/mol, and a PDI of 2.11.
Thermogravimetric analysis (TGA) showed that all the
polymers are of good thermal stability with the 5%

decomposition temperature up to 325 °C for P1, 345 °C for
P2, and 345 °C for P3 under a nitrogen atmosphere. No
obvious glass transition was detected for all the three polymers
via differential scanning calorimetry (DSC) measurements in
the range of 20−300 °C. The packing of polymer chains in the
solid state was investigated using powder X-ray diffraction
(XRD) experiment. As shown in Figure 1, P1 and P2 exhibit
two diffraction peaks in the powder XRD curves. The first
peaks in a small-angle region, which reflexes the distance of
polymer backbones separated by the flexible side chains, are
located at 2θ of 4.78° for P1 and 4.54° for P2, corresponding to
distances of 18.50 and 19.44 Å, respectively. The second peak
in the wide-angle region reflexes the π−π stacking distances
between polymer backbones, which are located at 2θ of 23.86°
for P1 and 24.77° for P2, corresponding to distances of 3.73
and 3.59 Å, respectively. P3 exhibits only a broad peak in the

Scheme 1. Synthetic Route of Copolymers P1, P2, and P3a

a(i) Aniline, SOCl2, toluene, 100 °C; (ii) NBS, H2SO4, 60 °C ; (iii) 2-
hexyldecan-1-ol, KOBut, THF, 60 °C; (iv) Pd2(dba)3 (dba,
dibenzylideneacetone), P(o-tol)3, 4,4,5,5-tetramethyl-2-(thiophen-2-
yl)-1,3,2-dioxaborolane, NaHCO3, THF/H2O, reflux; (v) NBS,
CHCl3, rt; (vi) Pd(PPh3)4, toluene/DMF (5:1, by volume), reflux.

Table 1. Molecular Weights and Thermal Properties of the
Copolymers

polymer Mn (kg/mol)a Mw (kg/mol)a PDI Td (°C)
b

P1 95.2 195.8 2.06 325
P2 57.8 123.8 2.14 345
P3 86.4 182.4 2.11 345

aMn, Mw, and PDI of polymers were determined by GPC at 150 °C
using polystyrene standards with 1,2,4-trichlorobenzene as an eluent.
bDecomposition temperatures were determined by TGA under N2
based on 5% weight loss.
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wide-angle region, which is located at 21.17°, corresponding to
a distance of 4.18 Å. Compared with P1 and P2, the larger π−π
stacking distance of P3 in the solid state indicates that the two
4,5-didecylthiophienyl substituents at the 4,8-position of
benzodithiophene unit can hamper the close and ordered
packing of polymer chains in the solid state.
Optical Properties. The optical properties of P1−P3 were

investigated by UV−vis absorption spectroscopy and their
absorption spectra in DCB solutions at room temperature, at
100 °C, and as thin films are shown in Figure 2, with the
corresponding data summarized in Table 2. The films were
spin-coated from polymer solutions in a concentration of 5 mg/
mL and a spin rate of 1000 rpm. As shown in Figure 2, P1−P3
exhibited similar film absorption spectra with two absorption
bands in the visible region, which can be assigned to the π−π*

transition of their main chain units and the CT absorption of
polymer main chains. For P1 and P2 in DCB solutions, upon
heating to 100 °C, the absorption maxima exhibited blue shifts
of about 40 and 55 nm, respectively, while for P3, the blue shift
is only about 7 nm. The above results indicated that P1 and P2
had a very strong tendency to aggregate at room temperature
and the formed aggregation can be readily dissociated at
elevated temperature. Since P3 is soluble in DCB at room
temperature, the blue shift of the absorption maximum is
smaller. The film absorption onsets (λonset) of P1, P2, and P3
are 698, 692, and 701 nm, respectively. The optical band gaps
(Eg,opt) of P1, P2, and P3 films were therefore calculated to be
1.78, 1.79, and 1.77 eV, respectively, according to the equation
Eg,opt = 1240/λonset.

Electrochemical Properties. Electrochemical properties of
P1, P2, and P3 were investigated by cyclic voltammetry (CV)
using a standard three-electrodes electrochemical cell. As
shown in Figure 3, these three polymers exhibited quasi

reversible redox processes. The onset oxidation potentials of
polymer films for P1, P2, and P3 are 0.54, 0.58, and 0.59 V,
respectively. HOMO levels of P1, P2, and P3 were determined,
using the equation EHOMO = −e(Eox + 4.71), to be −5.25,
−5.29, and −5.30 eV, respectively. LUMO levels of P1, P2, and
P3 were therefore calculated according to the equation ELUMO
= EHOMO + Eg,opt to be −3.47, −3.50, and −3.53 eV,
respectively. As expected, the replacing alkoxy side chain with
alkylthienyl group slightly lowers the HOMO and LUMO level
of polymers. The data are also summarized in Table 2.

Charge Transport Properties. As charge recombination is
a significant loss mechanism for photocurrent and slow charge
carrier determines the charge recombination process in
polymer solar cells, it is important to maintain balanced charge
carrier mobilities in a working device. Since electron mobility in
the phenyl-C61-butyric acid methyl ester (PC71BM) domain can
reach 10−2 cm2 V−1 s−1, it is desired to have hole mobility up to

Figure 1. XRD patterns of powder polymer samples.

Figure 2. UV−vis absorption spectra of P1 (a), P2 (b), and P3 (c) in
DCB solutions at room temperature, at 100 °C, and as thin films.

Table 2. Optical and Electrochemical Properties of P1, P2,
and P3

polymer λmax (nm)
λedge
(nm)

Eg,opt
(eV)a

HOMO
(eV)

LUMO
(eV)b

P1 419, 624 698 1.78 −5.25 −3.47
P2 442, 641 692 1.79 −5.29 −3.50
P3 434, 624 701 1.77 −5.30 −3.53

aCalculated from the absorption band edge of the copolymer film,
Eg,opt = 1240/λedge.

bCalculated by the equation ELUMO = EHOMO +
Eg,opt.

Figure 3. Cyclic voltammograms of P1, P2, and P3 in films on a
platinum electrode in 0.1 mol/L Bu4NPF6 acetonitrile solution at a
scan rate of 100 mV/s.
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10−4∼10−3 cm2 V−1 s−1 to avoid severe space charge buildup
and the concomitant charge recombination. To investigate the
charge transport properties of the resulted polymers, field-effect
transistors (FETs) using the polymers as an active layer were
fabricated, in which a top-contact configuration on Si/SiO2
substrates was employed, with low-resistance Si as the gate and
SiO2 (300 nm) as the gate insulator, respectively. Polymer thin
films were spin-coated on the octadecylsilane (OTS)-modified
Si/SiO2 substrates from DCB solutions, and Au electrodes with
a thickness of 25 nm were thermally evaporated onto polymer
thin films in vacuum. The transfer and output characteristic
curves of FET devices are shown in Figure 4. Hole mobility (μ)

was deduced from the derivative plots in the saturated regime
through the equation IDS = μ(W/2L)Ci(VG − VT)

2, where IDS is
the drain current, W is the channel width, L is the channel
length, Ci is the capacitance per unit area of the gate dielectric
layer (SiO2, 300 nm, Ci = 11 nF/cm2), and VG and VT are the
gain voltage and threshold voltage, respectively. Hole mobilities
of P1, P2, and P3 are 2.44 × 10−3, 9.03 × 10−2, and 2.17 × 10−3

cm2 V−1 s−1, respectively, which are comparable with the
electron mobility of PC71BM. Besides the extracted hole
mobilities, other parameters likes VT and on/off ratios are also
summarized in Table 3 for comparison, and the experimental
details and more organic field-effect transistors (OFET) results
are shown in Table 2 of the Supporting Information.
Photovoltaic Properties. To evaluate the photovoltaic

performance of P1−P3, a series of polymer solar cells with
device structure of indium tin oxide (ITO)/poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PE-

DOT:PSS)/active layer/LiF/Al were fabricated. After careful
optimization of the weight ratio between polymer/PC71BM, the
concentration of blend solution, the thickness of the active
layer, and film morphology via the use of additive like 1,8-
diiodooctane, best device performance was reached and the J−
V curves of the corresponding devices under simulated solar
illumination (AM 1.5G, 100 mW cm−2) are shown in Figure 5,

with the deduced parameters summarized in Table 4. With the
device configuration of ITO/PEDOT:PSS/active layer/LiF/Al,
the devices based on P1−P3 showed PCE of 5.54%, 6.43%, and
3.07%, respectively. For all polymers, a D−A ratio of 1:2 gave
the best results. Since the band gap and the electronic
properties of the three polymers are very close to each other,
the improved Jsc and better overall device performance in P2
devices were mainly attributed to the observed higher space
charge limited current (SCLC) mobility, which were measured
by using the SCLC method and the results are summarized in
Table 4. To further improve the performance of P2, inverted
devices with a configuration of ITO/PFN/active layer/MoO3/
Al were fabricated15 and a PCE of 6.88% was achieved, with a
Voc of 0.76 V, a Jsc of 14.67 mA/cm2, and an FF of 0.62. The
replacement of the alkyloxy side chain with the alkylthienyl side
group has been demonstrated to be an effective strategy to
enhance the performance of PSCs. In comparison with P1, P2
carrying alkylthienyl side group gave much better photovoltaic
performance, which is consistent with the results from the
literature.12,53,54 PSCs based on the double alkylthienyl
substituted P3 gave a high Voc of 0.89 V, a lower Jsc of 6.08
mA/cm2, and a PCE of 3.07%. The high Voc for P3-based
devices is probably due to two reasons: the first one is P3 has
the deepest HOMO level among these three polymers and the
second one is that P3 is an amorphous polymer (vide supra).
The morphology of the active layer can influence the Voc of
devices. Many examples have shown that the formation of large
spherical PC71BM aggregates usually give high Voc, but poor
PCE.57,58 As confirmed by the XRD measurement, the
crystallinity of P3 is much poorer than that of P2. It has
been demonstrated that increasing the crystallinity of polymers
can shift the absorption onset in the dry films and decrease the
open-circuit voltage.58,59

Figure 6a shows the UV−vis absorption spectra of blend
films used as the active layer. All the blend films show a broad

Figure 4. Transfer characteristics and output characteristics of the
OFETs for P1 (a, b), P2 (c, d), and P3 (e, f).

Table 3. FET Properties of the Pure Polymer Films

polymers on/off μ (cm2/(V s)) VT (V)

P1 6.18 × 105 2.44 × 10−3 −2.3
P2 1.22 × 107 9.03 × 10−2 −13.1
P3 1.06 × 106 2.17 × 10−3 −5.3

Figure 5. J−V characteristics of devices based on P1−P3 under solar
illumination (AM 1.5G, 100 mW/cm2).
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absorption ranging from 350 to 700 nm. P2 exhibited two
absorption peaks located at 591 and 646 nm, indicating that P2
has good crystallinity in films. The result is consistent with the
XRD result (vide supra). Figure 6b shows external quantum
efficiencies (EQEs) or the incident photon-to-current efficiency
(IPCE), the best P1−P3 devices fabricated under the
optimized condition, which are also used to verify the accuracy
of the measured Jsc values in the J−V measurements. Consistent
with the measured Jsc shown in Figure 4a and Table 4, P2
showed a highest phototo-current response in the region of
350−700 nm and with an average EQE around 70%, while P3
exhibited the lowest EQE. For the inverted device for P2, a

maximal EQE around 80% was reached in the range of 450−
550 nm, implying a very efficient photoconversion process and
balanced charge transport in the devices. Furthermore, the
calculated Jsc obtained by integrating the product of the EQE
with the AM 1.5G solar spectrum agreed with the measured
value to within 3%.

Film Morphology. To get further insight into the impact of
molecular structure on the device performance, morphologies
of the blend films were investigated by tapping-mode AFM
(TM-AFM). It is commonly accepted that the ideal
morphology for the active layer is an interpenetrating
bicontinuous network in which large interfacial area and
phase-separated domain size of 10−20 nm can facilitate exciton
dissociation and charge transport.57 As shown in Figure 7a, the
P1:PC71BM blend films are homogeneous without apparent
phase separation, with a root-mean-square (RMS) roughness of
1.75 nm. In contrast, the P2:PC71BM blend films as shown in
Figure 7b exhibit obvious nanoscale phase separation and a
RMS roughness of 1.53 nm. As for the P3:PC71BM (1:2) blend
films, ellipsoidal cluster feature can be clearly observed as
shown in Figure 7c, implying poor miscibility between P3 and
PC71BM.
Since AFM images only provide the surface morphology

information on blend films, we further apply transmission
electron microscopy (TEM) to investigate the composition and
in-depth morphology of the active layers. As shown in Figure 8,
nanoscale phase-separated structure and curved fibrils were
formed in the P1:PC71BM (1:2) blend films while more distinct
and straight nanofibers features were clearly observed in the
P2:PC71BM films. In contrast to the situation in P1/P2, much
larger aggregates (with a diameter of 100−200 nm) were
formed in the P3:PC71BM blend film, which is obviously
preferable neither for efficient exciton dissociation nor for
balanced charge transport. On the basis of the AFM and TEM
results, we can conclude that the side chains of P1−P3 have
imparted great influence on the morphology of blend films in
nanoscale as well as the performance of PSCs. The size of the
side substituent can influence the solubility of polymers. P3
with double alkyl substitution has the best solubility among

Table 4. Photovoltaic Performances and SCLC Mobilities of Polymer:PC71BM Blend Films

polymer D−A ratio Jsc (mA/cm
2) Voc (V) FF PCE (average)c thickness (nm) SCLC mobilities (cm2/(V s))

P1a 1:2 11.03 0.79 0.64 5.54% (5.35%) 110 2.81 × 10−5

P2a 1:2 13.50 0.78 0.61 6.43% (6.34%) 105 1.03 × 10−4

P2b 1:2 14.67 0.76 0.62 6.88% (6.74%) 107
P3a 1:2 6.08 0.89 0.57 3.07% (2.87%) 82 1.01 × 10−6

aDevice structure: ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al. bDevice structure: ITO/PFN/polymer:PC71BM/MoO3/Al.
cTen devices were

used to get the average value.

Figure 6. (a) UV−vis absorption spectra of blend films for polymers
and PC71BM; (b) EQE curves for the solar cells fabricated under the
optimized conditions.

Figure 7. TM-AFM height images of polymer and PC71BM blend film (weight ratio 1:2): (a) P1:PC71BM; (b) P2:PC71BM; (c) P3:PC71BM.
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these three polymers. The solubility of P2 is much poorer than
P3. P3 can be dissolved in chloroform at elevated temperature,
whereas P2 is insoluble in hot chloroform, but soluble in
chlorobenzene at elevated temperature. Because of its poor
solubility in DCB at room temperature, P2 is prone to
aggregate before the liquid−liquid phase separation occurs,58

which can result in appropriate morphology and higher power
conversion efficiency. Because of its good solubility in DCB, the
liquid−liquid phase separation dominates in the P3:PC71BM
system, which will result in large spherical PC71BM domains
and lower power conversion efficiency.58 More solvent choices
are required to further eliminate the poor morphology of P3 to
achieve higher PCE.

■ CONCLUSION
Three conjugated polymers P1−P3 based on 5-fluoro-6-
alkyloxybenzothiadiazole as the acceptor unit, benzodithio-
phene derivatives as the donor unit, and thiophene as the
spacer were designed, synthesized, and used as donor materials
in PSCs. PSCs based on P2:PC71BM (1:2) gave the highest
PCE of 6.88% with a Jsc of 14.67 mA/cm2, a Voc of 0.76 V, and
an FF of 0.62. AFM and TEM investigations revealed that the
side chains at the benzodithiophene unit have a great influence
on the morphology of blend films. The P1:PC71BM and
P2:PC71BM blend films are of interpenetrated fibrillar
structures, which can facilitate the charge carrier transportation.
The formation of spherical domains by PC71BM rich phase in

the P3:PC71BM blend films hamper the charge transport in the
active layer, which resulted in a smaller Jsc for P3:PC71BM
based PSCs. The morphology difference is probably caused by
the solubility difference of polymers. P1 and P2, which have a
poor solubility in the processing solvent, are prone to aggregate
before the liquid−liquid phase separation occurs, resulting in
appropriate morphology and higher power conversion
efficiency. P3 has good solubility in DCB; the liquid−liquid
phase separation dominates during the film drying, resulting in
large spherical PC71BM domains and lower power conversion
efficiency.
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